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STABILIZED BACKWARD IN TIME EXPLICIT MARCHING
SCHEMES IN THE NUMERICAL COMPUTATION OF ILL-POSED

TIME-REVERSED HYPERBOLIC/PARABOLIC SYSTEMS

ALFRED S. CARASSO∗

Abstract. This paper develops stabilized explicit marching difference schemes that can success-
fully solve a significant but limited class of multidimensional, ill-posed, backward in time problems
for coupled hyperbolic/parabolic systems associated with vibrating thermoelastic plates and coupled
sound and heat flow. Stabilization is achieved by applying compensating smoothing operators at
each time step, to quench the instability. Analysis of convergence is restricted to the transparent
case of linear, autonomous, selfadjoint spatial differential operators, and almost best-possible error
bounds are obtained for backward in time reconstruction in that class of problems. However, the
actual computational schemes can be applied to more general problems, including examples with
variable time dependent coefficients, as well as nonlinearities.

The stabilized explicit schemes are unconditionally stable, marching forward or backward in time,
but the smoothing operation at each step leads to a distortion away from the true solution. This
is the stabilization penalty. It is shown that in many problems of interest, that distortion is small
enough to allow for useful results.

Backward in time continuation is illustrated using 512×512 pixel images. Such images are associ-
ated with highly irregular non smooth intensity data that severely challenge ill-posed reconstruction
procedures. Several computational experiments show that efficient FFT-synthesized smoothing op-
erators, based on (−∆)p with real p > 2, can be successfully applied in a broad range of problems.

Key words. thermoelastic systems backward in time; coupled sound and heat flow backward
in time; stabilized explicit marching schemes; error bounds; numerical experiments.

AMS subject classifications. 35L15, 35K15, 35R25, 65N12, 65N21.

1. Introduction. Continuing a line of work work developed in [1–3], this paper
constructs stabilized explicit marching difference schemes that can successfully solve a
significant but limited class of multidimensional, ill-posed, backward in time problems,
for coupled hyperbolic/parabolic equations associated with vibrating thermoelastic
plates and coupled sound and heat flow. Stabilization is achieved by applying com-
pensating smoothing operators at each time step, to quench the instability. Analysis
of convergence is restricted to the transparent case of linear, autonomous, selfad-
joint spatial differential operators, and almost best-possible error bounds are obtained
for backward in time reconstruction in that class of problems. However, the actual
computational schemes can be applied to more general problems, including examples
with variable time dependent coefficients, as well as nonlinearities. Instructive com-
putational experiments illustrate the fact that efficient FFT-synthesized smoothing
operators, based on (−∆)p with real p > 2, can be successfully applied even in some
nonlinear backward problems defined in non-rectangular regions.

The paper is organized as follows. In Section 2, an explicit example highlights
the inherent uncertainty in backward reconstruction from noisy data. In Section 3, a
stable explicit marching scheme is constructed for the thermoelastic plate initial value
problem. In Section 4, Theorems 1 and 2 establish error estimates for the forward and
backward explicit schemes. These estimates delineate the class of problems wherein
the explicit scheme may be useful. Section 5 describes an instructive computational
experiment on backward reconstruction in the linear thermoelastic problem. Section
6 discusses the use of smoothing operators based on the Laplacian, even in problems
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  IMAGES ARE DEFINED BY HIGHLY NON SMOOTH INTENSITY 
  DATA THAT CHALLEN GE  ILL−POSED RECOVERY METHODS
 

Fig. 1.1. Plot of intensity values u(x, y) versus (x, y) in 512 × 512 pixel Mr Spock image.
Intensity values range from 0 to 255, and result in highly non smooth surface. Such images provide
excellent test examples for ill-posed reconstruction methods.

where the second order elliptic spatial differential operator L has variable coefficients.
Section 7 describes a backward reconstruction experiment on a nonlinear thermoelas-
tic problem lying outside the scope of the theory discussed in Sections 3 to 6. Section
8 constructs a stable explicit scheme for linear selfadjoint coupled wave and diffusion
equations, and establishes error estimates in Theorems 5 and 6. Section 9 describes
a backward reconstruction experiment in linear coupled sound and heat flow, while
Section 10 deals with nonlinear coupled sound and heat flow in a non-rectangular
region. Finally, some concluding remarks are offered in Section 11.

Beginning with the 1957 first edition of [4], which discussed the equations for
coupled sound and heat flow, and the work in [5] dealing with hydrodynamic flow and
radiation diffusion, there has been growing interest in coupled hyperbolic/parabolic
systems [6–9]. Heightened interest in the semigroup properties of such coupled sys-
tems was subsequently fueled by the equations for dynamic thermoelasticity [10–21].
It is now known that several types of thermoelastic problems can be associated with
holomorphic semigroups, whereas coupled sound and heat flow leads to exponentially
stable semigroups that are not holomorphic. Substantial analytical interest has also
developed in the time-reversed thermoelastic problem, centering on questions of back-
ward uniqueness and continuous dependence under a-priori constraints, [22–27], [29, p.
270]. However, little seems known regarding the possibility of effective numerical
computation of such backward problems. Several other examples of ill-posed inverse
problems with significant applications, are discussed in [7], [28], and [29].

As is well-known [4, p. 59], for ill-posed initial value problems, all consistent
time-marching difference schemes, whether explicit or implicit, are necessarily uncon-
ditionally unstable, and result in explosive noise amplification. The stabilized explicit
schemes introduced below are unconditionally stable, but slightly inconsistent, and
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lead to a distortion away from the true solution. This is the stabilization penalty. It
is shown that in many problems of interest, that error is small enough to allow for
useful results.

A particularly effective vehicle for computational exploration of backward in time
continuation in the above systems, lies in the use of 8 bit grey scale 512 × 512 pixel
images as initial data. As shown in Figure 1.1, many images are defined by highly
non smooth intensity data. In coupled hyperbolic/parabolic systems, three distinct
images are needed as initial values. In the subsequent forward evolution, these three
images blend into each other, in addition to undergoing severe blurring, resulting in
a solution at positive time T where these images are generally unrecognizable. Given
the blurring and mixing together in the associated non-smooth intensity data at time
T , recovering the original undistorted images at time t = 0 from the three images at
time T , in the presence of numerical noise, provides a challenging test for any ill-posed
reconstruction algorithm.

2. The uncertainty in backward reconstruction from imprecise data.
Consider the well-posed initial value problem

wt = Aw, t > 0, w(x, 0) = f(x), (2.1)

in some Banach space X with norm ‖ ‖X . Assume the system is irreversible so that
the time-reversed problem is ill-posed. Backward solutions from given data at some
time T > 0 will generally exist only for highly restricted exact solution data w(x, T ),
satisfying certain smoothness and other requirements that are not easily characterized.
Such exact data are seldom available in practice, and one must use approximate values
g(x) such that ‖ w(·, T )− g ‖X≤ δ, for some known small δ > 0. However, the given
data g(x) may approximate several distinct exact solutions wi(x, T ) at time T to
within δ in norm, and these distinct wi(x, T ) may be uniquely associated with vastly
different initial data wi(x, 0), due to the discontinuous dependence on data in the
time-reversed problem. Continuous dependence can be restored by restricting the
class of admissible solutions based on prior knowledge, such as requiring w(x, 0) to
satisfy a prescribed bound, ‖ w(·, 0) ‖X≤ M . It is assumed that g(x) and the known
constants M and δ, with δ ≪ M , are compatible with the existence of solutions.

This stabilized backward problem may then be stated as follows: find all solutions
of wt = Aw, 0 < t ≤ T , such that

‖ w(·, T )− g ‖X≤ δ, ‖ w(·, 0) ‖X≤ M. (2.2)

As shown in [29–35], in many cases, logarithmic convexity arguments can be used
to prove that if w1(x, t), w2(x, t) are any two solutions of Eq. (2.2) on [0, T ], and if
v(x, t) = w1(x, t) − w2(x, t), then

‖ v(·, t) ‖X ≤ Const. ‖ v(·, 0) ‖1−µ(t)
X ‖ v(·, T ) ‖µ(t)X , 0 ≤ t ≤ T,

≤ Const. M1−µ(t)δµ(t), 0 ≤ t ≤ T. (2.3)

In Eq. (2.3), the Hölder exponent µ(t) satisfies 0 ≤ µ(t) ≤ 1, with µ(t) > 0 for
t > 0, µ(0) = 0, µ(T ) = 1, and µ(t) ↓ 0 monotonically as t ↓ 0. For any given fixed
t > 0, the difference ‖ v(·, t) ‖X will be small, provided δ is sufficiently small. To the
extent that Eq. (2.3) is sharp, the right hand side of that inequality represents the
fundamental uncertainty in backward reconstruction at time t < T, from given noisy
data g(x) at time T .
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When the operator A in Eq. (2.1) is an autonomous linear selfadjoint operator in
a Hilbert space X , then µ(t) = t/T . This is the most desirable situation. However,
in other non-autonomous or nonlinear problems, the behavior in µ(t) is generally
sublinear, and rapid exponential decay of µ(t) to zero as t ↓ 0, may be possible. This is
the case, for example, in the Navier-Stokes equations [34]. The rate at which µ(t) ↓ 0,
is reflective of the rate at which the forward evolution equation wt = Aw in Eq. (2.1)
has forgotten the past, and hence, of the subsequent difficulty of reconstructing the
past from imperfect knowledge of the present.

As the following explicit example indicates, even a simple linear, one-dimensional
evolution equation, with a non-negative smooth solution, can present quite difficult
backward recovery problems. With a constant c > 0, consider the initial value problem

wt = ectwxx, 0 < x < π, t > 0, wx(0) = wx(π) = 0,

w(x, 0) = 1 + cosx, (2.4)

whose exact solution is wexact(x, t) = 1+exp{(1− ect)/c} cosx. Let g(x) ≡ 1, and let
v(x, t) = exp{(1− ect)/c} cosx, so that wexact = g + v.

With c = 5, consider backward reconstruction of wexact(x, t) from the approxi-
mate data g(x) ≡ 1 at T = 1, given the prescribed bound ‖ wexact(·, 0) ‖∞≤ M = 2.
We have ‖ wexact(·, T )− g ‖∞=‖ v(·, T ) ‖∞= δ < 1.6× 10−13.

The candidate reconstruction u(x, t) ≡ 1 is perfectly valid, and satisfies the error
estimate

‖ u(·, t)− wexact(·, t) ‖∞ = ‖ v(·, t) ‖∞=‖ v(·, 0) ‖1−µ(t)
∞ ‖ v(·, T ) ‖µ(t)∞ ,

= δµ(t), (2.5)

where µ(t) = (ect − 1)/(ecT − 1) ≈ e−c(T−t). Here, despite the fact that at t = T = 1,
we have δ < 1.6×10−13, we find δµ(t) > 0.6 at t = 0.25, due to the exponential decay
in µ(t). This rapid loss of accuracy as t ↓ 0, eventually results in a false reconstruction
of the smooth non negative initial values wexact(x, 0) = 1 + cosx, at t = 0.

3. A stabilized explicit scheme for the irreversible thermoelastic plate
initial value problem. Let Ω be a bounded domain in R2 with a smooth bound-
ary ∂Ω. Let < , > and ‖ ‖2, respectively denote the scalar product and norm
on L2(Ω). Let L denote a linear, second order, time-independent, positive definite
selfadjoint variable coefficient elliptic differential operator in Ω, with homogeneous
Dirichlet boundary conditions on ∂Ω. Let {φm}∞m=1 be the complete set of orthonor-
mal eigenfunctions for L on Ω, and let {λm}∞m=1, satisfying

0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · ↑ ∞, (3.1)

be the corresponding eigenvalues.

The following coupled hyperbolic parabolic system models a simplified thermoe-
lastic plate problem with homogeneous hinged boundary conditions. This problem
has been studied by several authors [11, 13–15, 18–20, 23, 24]. With L, λm, φm as in
Eq. (3.1), and positive constants α, β, consider the linear initial value problem on
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Ω× (0, T ],

ut = −βLu− αLv,

vt = Lw + αLu,

wt = −Lv,

u(x, y, 0) = f(x, y), v(x, y, 0) = g(x, y), w(x, y, 0) = h(x, y),

u(x, y, t) = v(x, y, t) = w(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, T ].

(3.2)

With L = −∆, w = ∆z, v = zt, the above system corresponds to the thermoelastic
plate problem ztt = −∆2z − α∆u, ut = β∆u+ α∆zt, with u = z = ∆z = 0 on ∂Ω.

The initial value problem Eq. (3.2) becomes ill-posed when the time direction is
reversed. We contemplate such time-reversed computations by allowing for possible
negative time steps ∆t in the explicit difference scheme Eq.(3.8) below. With λm as
in Eq. (3.1), the positive constants α, β and the operator L as in Eq. (3.2), fix ω > 0
and p > 1. Given ∆t, define ν, Λ, Q, ζm, rm, as follows:

ν = (3 + α+ α2 + 2β), Λ = ν(I + L), Q = exp(−ω|∆t|Λp),

ζm = ν(1 + λm) > 3, rm = exp (−ω|∆t|(ζm)p) , m ≥ 1.
(3.3)

For the purpose of the present theoretical development of stabilizing smoothing
operators such as Q, the family {λm, φm} in Eq. (3.1), is assumed known or precom-
puted. However, as will be illustrated in Sections 7 and 10 below, in many practical
computations, a different smoothing operator, based on a substitute elliptic opera-
tor L† with known characteristic pairs, such as the negative Laplacian, can be used
instead. Since p > 1 has non integer values typically, both the operators Λp and Q
in Eq. (3.3), must be synthesized in terms of the characteristic pairs {λm, φm} of L.
With ζm, rm as in Eq. (3.3), define for every h ∈ L2(Ω),

Λph = Σ∞
m=1(ζm)p < h, φm > φm, Qh = Σ∞

m=1rm < h, φm > φm. (3.4)

Let G, S, and P , be the following 3× 3 matrices

G =



−βL −αL 0
αL 0 L
0 −L 0


 , S =



Q 0 0
0 Q 0
0 0 Q


 , P =



Λp 0 0
0 Λp 0
0 0 Λp


 . (3.5)

Let W be the three component vector [u, v, w]T . We may rewrite Eq. (3.2) as the
equivalent first order system,

Wt = GW, 0 < t ≤ Tmax, W (·, 0) = [f, g, h]T . (3.6)

We shall study an explicit time-marching finite difference scheme for Eq.(3.6), in
which only the time variable is discretized, while the space variables remain continu-
ous. With a given positive integer N , let |∆t| = Tmax/N be the time step magnitude,
and let Wn denote W (·, n∆t), n = 0, 1, · · ·N . If W (·, t) is the unique solution of
Eq.(3.6), then

Wn+1 = Wn +∆tGWn + τn, (3.7)
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where the ‘truncation error’ τn = 1
2 (∆t)2G2W (t̃), with n|∆t| < t̃ < (n + 1)|∆t|.

With G and S as in Eq.(3.5), let R be the linear operator R = S + ∆tSG. Using
the smoothing operator S, we consider approximating Wn with Un ≡ [un, vn, wn]T ,
where

Un+1 = SUn +∆tSGUn ≡ RUn, n = 0, 1, · · · (N − 1), U0 = [f, g, h]T . (3.8)

With ∆t > 0 and the data U0 at time t = 0, the forward marching scheme in Eq.(3.8)
aims to solve a well-posed problem. However, with ∆t < 0, together with appropriate
data U0 at time Tmax, marching backward from Tmax in Eq.(3.8) attempts to solve an
ill-posed problem. It remains to be seen whether Un can be a useful approximation
to Wn, by proper choices of ω, p, and |∆t|. Define the following norms for three
component vectors such as W (·, t) and Un,

‖ W (·, t) ‖2=
{
‖ u(·, t) ‖22 + ‖ v(·, t) ‖22 + ‖ w(·, t) ‖22

}1/2
,

‖ Un ‖2=
{
‖ un ‖22 + ‖ vn ‖22 + ‖ wn ‖22

}1/2
,

|||W |||2,∞ = sup 0≤t≤Tmax
{‖ W (·, t) ‖2} .

(3.9)

Lemma 1. With p > 1, and ζm, rm, as in Eq.(3.3), fix a positive integer J, and
choose ω ≥ (ζJ )

1−p. Then,

rm (1 + |∆t|ζm) ≤ 1 + |∆t|ζJ , m ≥ 1. (3.10)

Proof : The inequality in Eq. (3.10) is valid for 1 ≤ m ≤ J, in view of Eq. (3.1). For
m > J ,

exp{−ω|∆t|(ζm)p} ≤ exp{−ω|∆t|ζm(ζJ )
p−1} ≤ exp{−|∆t|ζm}, (3.11)

since ω(ζJ)
p−1 ≥ 1. Also, exp{−|∆t|ζm|} ≤ (1 + |∆t|ζm)

−1
, since 1 + x ≤ ex for real

x. Hence, for m > J, rm (1 + |∆t|ζm) ≤ 1. QED.

Lemma 2. With ω, p, ζJ , as in Lemma 1, and R as in Eq.(3.8), we have
‖ R ‖2≤ 1 + |∆t|ζJ . The explicit scheme in Eq.(3.8) is unconditionally stable, and

‖ Un ‖2=‖ RnU0 ‖2≤ exp{n|∆t|ζJ} ‖ U0 ‖2, n = 1, 2, · · · , N. (3.12)

Proof : In the system Un+1 = SUn + ∆tSGUn, expand in the orthonormal eigen-
functions φm, using Lφm = λmφm. Let un =

∑∞
m=1 u

n
mφm, vn =

∑∞
m=1 v

n
mφm,

wn =
∑∞

m=1 w
n
mφm, where gnm =< gn, φm >. Then, with rm as in Eq.(3.3),

un+1
m = rmun

m − rmλm∆t(βun
m + αvnm),

vn+1
m = rmvnm + rmλm∆t(αun

m + wn
m),

wn+1
m = rmwn

m − rmλm∆tvnm.

(3.13)
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Hence,

|un+1
m |2 ≤ r2m|un

m|2 + r2m∆t2|βλmun
m + αλmvnm|2 + 2r2m|∆t||un

m||βλmun
m + αλmvnm|,

|vn+1
m |2 ≤ r2m|vnm|2 + r2mλ2

m∆t2|αun
m + wn

m|2 + 2r2mλm|∆t||vnm||αun
m + wn

m|,

|wn+1
m |2 ≤ r2m|wn

m|2 + r2mλ2
m∆t2|vnm|2 + 2r2mλm|∆t||wn

mvnm|.
(3.14)

Next, using 2xy ≤ x2 + y2,

2r2m|∆t| |un
m| |βλmun

m + αλmvnm| ≤ 2r2m|∆t|βλm|un
m|2 + 2r2m|∆t|αλm|un

mvnm|,
≤ r2m|∆t|(2β + α)λm|un

m|2 + r2m|∆t|αλm|vnm|2, (3.15)

and

r2m∆t2|βλmun
m + αλmvnm|2 ≤ 2r2m∆t2β2λ2

m|un
m|2 + 2r2m∆t2α2λ2

m|vnm|2. (3.16)

Likewise,

2r2mλm|∆t||vnm||αun
m + wn

m| ≤ r2m|∆t|λm{2|vnm|2 + α2|un
m|2 + |wn

m|2}, (3.17)

and

r2m∆t2λ2
m|αun

m + wn
m|2 ≤ 2r2m∆t2λ2

m{α2|un
m|2 + |wn

m|2}. (3.18)

Therefore, with ν = (3 + α+ α2 + 2β), ζm = ν(1 + λm),

|un+1
m |2 + |vn+1

m |2 + |wn+1
m |2 ≤

|un
m|2r2m

{
1 + (α+ α2 + 2β)λm|∆t|+ (2α2 + 2β2)λ2

m∆t2
}

+|vnm|2r2m
{
1 + (3 + α)λm|∆t|+ (1 + 2α2)λ2

m∆t2
}

+|wn
m|2r2m

{
1 + 2λm|∆t|+ 2λ2

m∆t2
}

≤ r2m(1 + ζm|∆t|)2(|un
m|2 + |vnm|2 + |wn

m|2),

(3.19)

which implies Eq. (3.12) on using Lemma 1. QED

If W (t) is the unique solution of Eq.(3.6) on 0 ≤ t ≤ Tmax, we get from Eq.(3.7)
with 0 ≤ n ≤ N − 1,

Wn+1 = RWn + (Wn − SWn) + ∆t(GWn − SGWn) + τn. (3.20)

Lemma 3. Let W (t) be the unique solution of Eq.(3.6). Then, with S and P as
in Eq.(3.5), the definitions of the norms in Eq.(3.9), and 0 ≤ n ≤ N ,

‖ τn ‖2 ≤ 1/2(∆t)2 |||G2W |||2,∞,

‖ Wn − SWn ‖2 ≤ ω|∆t| |||PW |||2,∞,

|∆t| ‖ GWn − SGWn ‖2 ≤ ω(∆t)2 |||PGW |||2,∞. (3.21)

Proof : The inequality for the truncation error τn in Eq. (3.21) follows naturally from
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the defintions in Eq. (3.9). Expanding in the orthonormal eigenfunctions φm of L,
and using the inequality 1− e−x ≤ x for all real x, we get

‖ Wn − SWn ‖22 =
∞∑

m=0

(1− rm)2(|un
m|2 + |vnm|2 + |wn

m|2),

≤
∞∑

m=0

(ω|∆t|(ζm)p)
2
(|un

m|2 + |vnm|2 + |wn
m|2),

= (ω∆t)2
(
‖ PWn ‖22

)
. (3.22)

This proves the second inequality in Eq. (3.21). The last inequality is a corollary of
the second. QED.

4. The stabilization penalties in the forward and backward problems.
Explicit time differencing in systems of partial differential involving heat conduction,
generally requires stringent Courant stability restrictions on the time step ∆t. The
stabilizing smoothing operator S in the explicit scheme in Eq.(3.8) leads to uncondi-
tional stability, but at the cost of introducing a small error at each time step. We must
now assess the cumulative effect of that error. If the accumulated error at the final
time Tmax is sufficiently small, the stabilized explicit scheme would offer considerable
advantages in the computation of multidimensional problems on fine meshes.

We have the following result for the stabilization penalty in the well-posed forward
problem.

Theorem 1. With ∆t > 0, let Wn be the unique solution of Eq.(3.6) at t = n∆t.
Let Un be the corresponding solution of the forward explicit scheme in Eq. (3.8),
and let p, ζJ , ω, be as in Lemma 1. If ER(t) ≡ Un − Wn, denotes the error at
t = n∆t, n = 0, 1, 2, · · · , N, we have

‖ ER(t) ‖2≤ etζJ ‖ ER(0) ‖2 +
{
ω(etζJ − 1)/ζJ

}
|||PW |||2,∞

+
{
(etζJ − 1)/ζJ

}{
ω∆t |||PGW |||2,∞ + (∆t/2) |||G2W |||2,∞

}
. (4.1)

Proof : LetHn = τn+(Wn−SWn)+∆t(GWn−SGWn). Then, Wn+1 = RWn+Hn,
while Un+1 = RUn. Therefore

Un+1 −Wn+1 = R(Un −Wn) +Hn = Rn+1ER(0) + ∆t

n∑

j=0

Rn−jHj/(∆t). (4.2)

Hence, using Lemma 2, and letting t = (n+ 1)∆t,

‖ ER(t) ‖2 ≤ etζJ ‖ ER(0) ‖2 + {|||H |||2,∞/∆t}∆t

n∑

j=0

‖ Rn−j ‖2,

≤ etζJ ‖ ER(0) ‖2 + {|||H |||2,∞/∆t}
∫ t

0

eζJ (t−u)du

= etζJ ‖ ER(0) ‖2 + {|||H |||2,∞/∆t} (etζJ − 1)/µJ . (4.3)

Next, using Lemma 3 to estimate {|||H |||2,∞/∆t}, one obtains Eq. (4.1) from Eq.
(4.3). QED.
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In the forward problem, we may assume the given data U0 = [f, g, h]T to be known
with sufficiently high accuracy that one may set ER(0) = 0 in Eq.(4.1). Choosing
ω = (ζJ )

1−p in Lemma 1, Eq.(4.1) reduces to

‖ ER(t) ‖2≤ (ζJ )
−p(etζJ − 1) |||PW |||2,∞ + O(∆t), 0 ≤ t ≤ Tmax. (4.4)

Therefore, when using the explicit scheme in Eq.(3.8), there remains the non-vanishing
residual error (ζJ )

−p(etζJ −1) |||PW |||2,∞, as ∆t ↓ 0. This is the stabilization penalty,
which results from smoothing at each time step, and grows monotonically as t ↑ Tmax.
Clearly, if Tmax is large, the accumulated distortion may become unacceptably large
as t ↑ Tmax, and the stabilized explicit scheme is not useful in that case. On the
other hand, if Tmax is small, as is the case in problems involving small values of t,
it may be possible to choose p > 2 and large ζJ , yet with small enough ζJTmax

that (ζJ )
−p(eζjTmax −1) is quite small. In that case, the stabilization penalty remains

acceptable on 0 ≤ t ≤ Tmax. As an example, with Tmax = 10−3, p = 2.75, and
ζJ = 104, we find (ζJ )

−p(eζjTmax − 1) < 2.21× 10−7. For this important but limited
class of problems, the absence of restrictive Courant conditions on the time step ∆t in
the explicit scheme in Eq.(3.8), provides a significant advantage in well-posed forward
computations of multidimensional problems on fine meshes.

There is an additional penalty in the ill-posed backward problem. As noted in
Section 2, in marching backward from t = Tmax, solutions exist only for a restricted
class of data satisfying certain smoothness constraints. Such data are seldom known
with sufficiently high accuracy. We shall assume that the given data Ub = [fb, gb, hb]

T

at t = Tmax, differs from such unknown exact data W (·, Tmax) by small amounts:

‖ Ub −W (·, Tmax) ‖2≤ δ. (4.5)

This leads to the following result.
Theorem 2. With ∆t < 0, let Wn be the unique solution of the forward well-

posed problem in Eq.(3.6) at s = Tmax−n|∆t|. Let Un be the solution of the backward
explicit scheme in Eq. (3.8), with initial data U(0) = Ub = [fb, gb, hb] as in Eq.(4.5).
Let p, ζJ , ω, be as in Lemma 1. If ER(s) ≡ Un − Wn, denotes the error at s =
Tmax − n|∆t|, n = 0, 1, 2, · · · , N, we have, with δ as in Eq.(4.5),

‖ ER(s) ‖2≤ δen|∆t|ζJ +
{
ω(en|∆t|ζJ − 1)/ζJ

}
|||PW |||2,∞

+
{
(en|∆t|ζJ − 1)/ζJ

}{
ω|∆t| |||PGW |||2,∞ + (|∆t|/2) |||G2W |||2,∞

}
. (4.6)

Proof : Let Hn = τn+(Wn−SWn)+∆t(GWn−SGWn). Then, Wn+1 = RWn+Hn,
while Un+1 = RUn. Therefore

Un+1 −Wn+1 = R(Un −Wn) +Hn = Rn+1ER(0) + |∆t|
n∑

j=0

Rn−jHj/(|∆t|). (4.7)

Hence, using Lemma 2, and with t = (n+ 1)|∆t|,

‖ Un+1 −Wn+1 ‖2 ≤ δetζJ + {|||H |||2,∞/|∆t|} |∆t|
n∑

j=0

‖ Rn−j ‖2,

≤ δetζJ + {|||H |||2,∞/|∆t|}
∫ t

0

eζJ (t−u)du. (4.8)
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As in the preceding Theorem, we may now use Lemma 3 to estimate {|||H |||2,∞/|∆t|}
and obtain Eq.(4.6) from Eq.(4.8). QED.

It is instructive to compare the results in the well-posed case in Eq.(4.4), with the
ill-posed results implied by Eq.(4.6). For this purpose, we must reevaluate Eq.(4.6)
at the same t values that are used in Eq.(4.4). With ∆t > 0, t = k∆t, and W k =
W (k∆t), let Uk now denote the precomputed backward solution evaluated at t =
k∆t. Let ER(t) = Uk −W k, k = 0, 1, 2, · · · , N, with Tmax = N∆t. Again, choosing
ω = (ζJ )

1−p, we get from Eq.(4.6),

‖ ER(t) ‖2 ≤ (ζJ )
−p {exp[ζJ (Tmax − t)]− 1} |||PW |||2,∞

+ δ exp{ζJ(Tmax − t)} + O(∆t), 0 ≤ t ≤ Tmax. (4.9)

Here, the stabilization penalty is augmented by an additional term, resulting from
amplification of the error δ in the given data at t = Tmax, as shown in Eq.(4.5). Both
of these terms grow monotonically as t ↓ 0, reflecting backward in time marching from
t = Tmax.

Again, with large Tmax, the non-vanishing residuals in Eq. (4.9) as |∆t| ↓ 0,
lead to large errors, and the backward explicit scheme is not useful in such cases.
However, there is an important class of ill-posed backward problems, problems with
small Tmax and small δ, for which Eq.(4.9) leads to almost optimal results. In
addition to Eq.(4.5), assume W (x, 0) satisfies a prescribed L2 bound M . These a-
priori constraints are expressed as follows

‖ W (·, Tmax)− Ub ‖2≤ δ, ‖ W (·, 0) ‖2≤ M. (4.10)

We now choose ζJ in terms of M and δ, and define β(t) as follows

ζJ = (1/Tmax) log(M/δ), β(t) = t/Tmax. (4.11)

With these definitions, Eq. (4.9) now becomes

‖ ER(t) ‖2 ≤ (ζJ )
−p {exp[ζJ(Tmax − t)]− 1} |||PW |||2,∞

+ M1−β(t) δβ(t) + O(∆t), 0 ≤ t ≤ Tmax. (4.12)

The second term on the right in Eq. (4.12) represents the fundamental uncertainty in
ill-posed backward continuation from noisy data, for solutions satisfying prescribed
bounds, as in Eq. (4.10). As noted in Section 2, with β(t) = t/Tmax, the uncer-
tainty M1−β(t) δβ(t) is known to be best-possible in the case of autonomous selfadjoint
problems, [31], [32]. The first term in Eq. (4.12), which is also present in the for-
ward problem, is the penalty that must be incurred for computing multidimensional
problems, using simple explicit schemes without stringent Courant restrictions on the
time step ∆t. In many problems of interest, the choice of ζJ in Eq. (4.11), together
with a suitable value of p > 2, can make that first term small enough to enable
useful backward recovery in Eq.(3.6). For example, with parameter values such as
Tmax = 10−3, M = 102, δ = 10−3, p = 2.75, we have M/δ = 105 = exp{ζjTmax},
and (ζJ )

−p < 6.79× 10−12. We would then obtain from Eq. (4.12),

‖ ER(t) ‖2 ≤ M1−β(t) δβ(t)

+ (6.79× 10−7) |||PW |||2,∞ + O(∆t), 0 ≤ t ≤ Tmax. (4.13)
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Remark 1. The above analysis, valid in general domains Ω ∈ R2, assumes knowledge
of the complete set of characteristic pairs {λm, φm} of the elliptic operator L, to
enable synthesis of the smoothing operator Q in Eq. (3.3). As discussed in Section 6
below, and illustrated in Section 7, in several special domains, an equivalent smoothing
operatorQ† may readily be available on that particular domain, and one may dispense
with complete knowledge of {λm, φm}.

However, in other cases, precomputing a sufficiently large number K of eigenpairs
{λm, φm} of a linear selfadjoint elliptic operator L on a general domain Ω, may well
be warranted. If the operator L is representative of a class of more general, possibly
nonlinear, differential operators L̃, one may be able to synthesize a useful smoothing
operatorQ using the first K eigenpairs of L, and use it to stabilize explicit schemes for
several time-reversed nonlinear equations. Computational methods for elliptic eigen-
value problems are discussed in [36–38].

Remark 2. In most practical applications of ill-posed backward problems, the values
of M and δ in Eq. (4.10) are seldom known accurately. In many cases, interactive
adjustment of the parameter pair (ω, p) in the definition of Q in Eq. (3.3), based on
prior knowledge about the exact solution, is crucial in obtaining useful reconstruc-
tions. This process is similar to the manual tuning of an FM station, or the manual
focusing of binoculars, and likewise requires user recognition of a ‘correct’ solution.

5. Linear computational experiment on backward in time reconstruc-
tion in thermoelastic plate. With Ω the open unit square 0 < x, y < 2π, and
0 ≤ t ≤ Tmax = 7.5× 10−3, we consider the following thermoelastic plate problem on
Ω× (0, Tmax), ztt = −∆2z − α∆u, ut = β∆u + α∆zt. Here, u(x, y, t) denotes the
temperature, z(x, y, t) the displacement, zt(x, y, t) the velocity, α = 1, β = 2, and
u = z = ∆z = 0 on ∂Ω× [0, Tmax]. See [11, 14, 15, 18].

Putting v = zt, w = ∆z, and now referring to w(x, y, t) as the ’displacement’, we
obtain the equivalent first order system

ut = β∆u+ α∆v,

vt = −∆w − α∆u,

wt = ∆v,

u(x, y, 0) = f(x, y), v(x, y, 0) = g(x, y), w(x, y, 0) = h(x, y),

u(x, y, t) = v(x, y, t) = w(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, Tmax].

(5.1)

In this computational experiment, the initial values f(x, y), h(x, y), g(x, y), are
the intensity data that define the three images shown in the top row of Figure 5.1.
These are 8 bit grey scale 512×512 images with intensity values ranging from 0 to 255.
We may interpret the MRI brain image f(x, y), as representing temperature above
(or below) a reference level, measured in tenths of a degree. Likewise, the USAF
resolution chart image h(x, y), may represent deflection from equilibrium, measured
in tenths of a millimeter, while the satellite image g(x, y) may represent velocity in
appropriate units.
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All three initial values are non-negative functions on Ω. However, at positive
values of t, u(x, y, t), v(x, y, t), w(x, y, t), may develop substantial negative values
as a natural consequence of the evolution in Eq. (5.1). Accurate knowledge of these
negative values is essential for successful backward recovery. We write

u+(x, y, t) = max{u(x, y, t), 0} ≥ 0, u−(x, y, t) = −min{u(x, y, t), 0} ≥ 0,

u(x, y, t) = u+(x, y, t)− u−(x, y, t),
(5.2)

with a similar decomposition for v(x, y, t) and w(x, y, t).
With ∆x = ∆y = (2π)/512, a uniform spatial grid was placed on Ω. Tak-

ing advantage of the constant coefficient differential operators in Eq. (5.1), highly
accurate Fourier methods for spatial discretization can be used, based on FFT algo-
rithms. Using ∆t = 3 × 10−7, and choosing Tmax = 25000∆t = 7.5 × 10−3, stable
forward numerical computation was carried out on [0, Tmax]. The resulting values of
u+(x, y, Tmax), w+(x, y, Tmax), v+(x, y, Tmax), are displayed as the three images in
the middle row of Figure 5.1.

Evidently, each of the three images in the middle row has been corrupted by the
other two images, while undergoing severe blurring. The computed data u(x, y, Tmax),
v(x, y, Tmax), w(x, y, Tmax), while unavoidably affected by discretization errors and
numerical noise, are presumed to be a good approximation to the true solution of
Eq, (5.1) at t = Tmax.

Using these data, and the previous values of ∆x, ∆y, and ∆t, the stabilized
explicit scheme in Eq. (3.8) was run backward 25000 time steps from Tmax. Here,
the fact that Ω is a rectangular region with L the negative Laplacian, is a significant
advantage. The characteristic pairs of L are known explicitly, and FFT algorithms
can be used to synthesize the smoothing operator Q in Eq. (3.3). As discussed in
Remark 2 above, interactive adjustment of the parameter pair (ω, p) in the definition
of Q, based on prior knowledge about the solution, was found helpful. The pair
ω = 3.0× 10−8, p = 3.275, produced the reconstruction shown in the bottom row of
Figure 5.1. Here, u+(x, y, 0), v+(x, y, 0), w+(x, y, 0), were chosen as the reconstructed
solution, based on prior knowledge that the correct initial values are non-negative
functions on Ω. Additional information on this reconstruction is provided in Figures
5.2. Magnification of the images in these two Figures is helpful.

Clearly, substantial reconstruction has been achieved from severely blurred data.
Since the operator L in this experiment is linear, autonomous, and selfadjoint, the
error estimate in Eq. (4.12) in Section 5.2 applies. With Tmax = 7.5×10−3, ω = 3.0×
10−8, p = 3.275, we obtain from ω = (ζJ )

(1−p), that ζJ = 2027 and ζJTmax = 15.2.
Hence, (ζJ )

−p {exp(ζJTmax)− 1} < 5.91 × 10−5, which indicates a small value for
the first term on the right of Eq. (4.12). This ‘stabilization penalty’ is the price paid
for avoiding the explosive computational instability that results when using stepwise
marching schemes in ill-posed initial value problems, [4, p. 59].

Figure 5.2 draws attention to the distortion and subsequent recovery of the actual
intensity data that define the MRI brain image. As the plots for u+(x, y, Tmax),
u−(x, y, Tmax) indicate, the input data at time Tmax develop significant negative
values, while displaying substantial transformation from the original data at time
t = 0. The plots for the recovered data at time t = 0 are not identical to the original
plots at t = 0. Such discrepancies are anticipated by the presence of the second term
on the right in Eq. (4.12). As discussed in Section 2, there is a necessary uncertainty
in reconstructing the past from imperfect knowledge of the present.
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Temperature at time  0 Displacement at tim e 0 Velocity at time 0

 Temperature at tim e T       Displacem ent at time T        Velocity at time T

Recovered at time 0          Recovered at time 0        Re covered at time 0

 Using input data a t positive time T, shown in middle
 row, explicit sche me marching backwar d in time seeks
 to recover true in itial data at time 0, shown in top row .

 BACKWARD RECOVERY IN LINEAR THERMOELA STIC 
  PLATE PROBLEM WIT H CONSTANT COEFFICIENTS.
 

Actually recovered data are shown in la st row.

Fig. 5.1. Linear thermoelastic experiment in Section 5 shows severe distortion and blurring of
initial data in forward evolution up to time Tmax, followed by successful backward in time recon-
struction using stabilized explicit scheme in Eq. (3.8).
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u  (x,y,T)+

u (x,y,T)

Temperature at time  0

Temperature at time  T

Correct  initial  d ata   u(x,y,0)

Recovered  data  u( x,y,0)

Recovered at time 0

BACKWARD RECOVERY O F INITIAL TEMPERATU RE DATA IN
LINEAR CONSTANT COE FFICIENT PROBLEM.  INPUT DATA
AT POSITIVE TIME T HAVE  SIGNIFICANT NEGATIVE VALUES. 

u(x,y,T) = u (x,y,T ) − u (x,y,T)

−

+ −

Input data  u(x,y,T ) at positive time T

Fig. 5.2. Severe distortion along with development of negative values in forward evolution of
temperature data up to time Tmax, in linear thermoelastic experiment in Section 5. As discussed in
Section 2, inexact input data at time Tmax results in small discrepancies in backward recovery at
t = 0.
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6. Substitute smoothing operators. Using the Laplacian for smoothing
when L has variable coefficients. As noted in Remark 1, the developments in Sec-
tions [3-5] presuppose knowledge of the characteristic pairs of the variable coefficient
elliptic operator L, or the precomputation of a sufficiently large number of such pairs.
However, it is often possible to use a substitute smoothing operator Q†, based on a
different elliptic operator with known characteristic pairs.

Let ∆ denote the Laplacian operator in Ω, with homogeneous Dirichlet boundary
conditions on ∂Ω. With ν, L, Λ, as in Eq. (3.3), let Γ = ν(I −∆). For any real q > 1
and ǫ > 0, define

Q∆ = exp{−ǫ|∆t| Γq}, (6.1)

Closed form expressions for the eigenfunctions of the Laplacian are known for specific
domains that are important in applications, including rectangles, circles, and spheres
[39]. On such domains, it may be advantageous to construct smoothing operators
Q∆ based on the Laplacian, in lieu of the smoothing operator Q in Eq.(3.3). Such a
program is feasible for those differential operators L for which the following result is
valid: Given any ω > 0, and p > 1, there exist ǫ > 0, and real q ≥ p, such that for
all g ∈ L2(Ω) and sufficiently small |∆t|,

‖ exp{−ǫ|∆t| Γq}g ‖2≤‖ exp{−ω|∆t|Λp}g ‖2, =⇒ ‖ Q∆g ‖2≤‖ Qg ‖2 . (6.2)

The linear operator H = (exp{−ǫ|∆t| Γq}) (exp{ω|∆t|Λp}) is well-defined on the
range of (exp{−ω|∆t|Λp}), which is dense in L2(Ω). The inequality in Eq.(6.2) would
follow if it can be shown that H can be extended to a bounded operator on all of
L2(Ω), with ‖ H ‖2≤ 1.

Eq. (6.2) appears to be validated in numerous computational experiments. Re-
sults of a somewhat similar nature are known in the theory of Gaussian estimates for
heat kernels. See e.g. [40–43], and the references therein.

Let S∆ and P∆ be the following 3× 3 matrices

S∆ =



Q∆ 0 0
0 Q∆ 0
0 0 Q∆


 , P∆ =



Γq 0 0
0 Γq 0
0 0 Γq


 . (6.3)

The Laplacian stabilized explicit scheme corresponding to Eq.(3.8) is given by

Un+1 = S∆U
n +∆tS∆GUn ≡ R∆U

n, n = 0, 1, · · · (N − 1), U0 = [f, g, h]T , (6.4)

to which the following result applies.
Lemma 4. Let p, ζJ , ω be as in Lemma 1, and let R and R∆ be, respectively,

the operators in Eq.(3.8) and Eq.(6.4). Choose ǫ > 0 and q ≥ p, such that for all
g ∈ L2(Ω)

‖ exp{−ǫ|∆t| Γq}g ‖2≤‖ exp{−ω|∆t|Λp}g ‖2, (6.5)

as postulated in Eq. (6.2). Then, ‖ R∆ ‖2≤‖ R ‖2≤ (1 + |∆t|ζJ ), the explicit scheme
in Eq. (6.4) is unconditionally stable, and Un satisfies

‖ Un ‖2=‖ Rn
∆U

0 ‖2≤ exp{n|∆t|ζJ} ‖ U0 ‖2, n = 1, 2, · · · , N. (6.6)
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Proof : Let F be any three dimensional vector [f, g, h]T . Then,

‖ S∆F ‖22 = ‖ Q∆f ‖22 + ‖ Q∆g ‖22 + ‖ Q∆h ‖22
≤ ‖ Qf ‖22 + ‖ Qg ‖22 + ‖ Qh ‖22=‖ SF ‖22, (6.7)

on using Eq.(6.2). Hence, ‖ R∆U
n ‖2≤‖ RUn ‖2, and the result follows from Lemma

2. QED.

Remark 3. As mentioned in Remark 2 and illustrated in Section 7, useful pairs
(ǫ, q) in the Laplacian stabilized scheme in Eq.(6.4) are generally found interactively
after relatively few trials. In many numerical experiments, typical values satisfy
2 < q < 4, 10−10 ≤ ǫ ≤ 10−6.

Lemma 5. Let W (t) be the unique solution of Eq.(3.6). Then, with S∆ and P∆

as in Eq.(6.3), the definitions in Eq.(3.9), and 0 ≤ n ≤ N ,

‖ τn ‖2 ≤ 1/2(∆t)2 |||G2W |||2,∞,

‖ Wn − S∆W
n ‖2 ≤ ǫ|∆t| |||P∆W |||2,∞,

|∆t| ‖ GWn − S∆GWn ‖2 ≤ ǫ(∆t)2 |||P∆GW |||2,∞. (6.8)

Proof : The proof follows from expanding in the orthonormal eigenfunctions of ∆ as
in the proof of Lemma 3. QED.

Using Lemmas 4 and 5, together with the arguments in Theorems 1 and 2, leads
to the following corresponding results for the Laplacian stabilized explicit scheme in
Eq. (6.4).

Theorem 3. Let p, ζJ , ω, be as in Lemma 1, and choose ǫ > 0 and q ≥ p, such
that Eq. (6.2) is satisfied. With ∆t > 0, let Wn be the unique solution of Eq.(3.6) at
t = n∆t, and let Un be the corresponding solution of the forward explicit scheme in
Eq. (6.4). If ER∆(t) ≡ Un −Wn, denotes the error at t = n∆t, n = 0, 1, 2, · · · , N,
then

‖ ER∆(t) ‖2≤ etζJ ‖ ER∆(0) ‖2 +
{
ǫ(etζJ − 1)/ζJ

}
|||P∆W |||2,∞

+
{
(etζJ − 1)/ζJ

}{
ǫ∆t |||P∆GW |||2,∞ + (∆t/2) |||G2W |||2,∞

}
. (6.9)

Theorem 4. Let p, ζJ , ω, be as in Lemma 1, and choose ǫ > 0 and q ≥ p,
such that Eq. (6.2) is satisfied. With ∆t < 0, let Wn be the unique solution of the
forward well-posed problem in Eq.(3.6) at s = Tmax − n|∆t|. Let Un be the solution
of the backward explicit scheme in Eq. (6.4), with initial data U(0) = [fb, gb, hb] as
in Eq.(4.5). If ER∆(s) ≡ Un − Wn, denotes the error at s = Tmax − n|∆t|, n =
0, 1, 2, · · · , N, we have, with δ as in Eq.(4.5),

‖ ER∆(s) ‖2≤ δen|∆t|ζJ +
{
ǫ(en|∆t|ζJ − 1)/ζJ

}
|||P∆W |||2,∞

+
{
(en|∆t|ζJ − 1)/ζJ

}{
ǫ|∆t| |||P∆GW |||2,∞ + (|∆t|/2) |||G2W |||2,∞

}
. (6.10)
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Analogously to Eqs. (4.4), (4.12), we have the following Corollaries to Theorems 3
and 4.

Corollary 1. In the well-posed forward problem in Theorem 3 with exactly
known initial data U0, choose ω = (ζJ )

1−p. Then,

‖ ER∆(t) ‖2≤ (ζJ )
−p(etζJ − 1) (ǫ/ω) |||P∆W |||2,∞ + O(∆t), 0 ≤ t ≤ Tmax. (6.11)

Corollary 2. Let W (t) be the exact solution of the forward well-posed problem
in Eq.(3.6). With ∆t > 0, t = k∆t, let W k = W (k∆t). With known M, δ as in
Eq.(4.10), let ζJ and β(t) be defined as in Eq.(4.11). Choose ω = (ζJ )

1−p, and choose
ǫ > 0 and q ≥ p, such that Eq. (6.2) is satisfied. Let Uk now denote the precomputed
backward solution in Theorem 4, evaluated at t = k∆t. Then,

‖ ER∆(t) ‖2 ≤ (ζJ )
−p {exp[ζJ (Tmax − t)]− 1} (ǫ/ω) |||P∆W |||2,∞

+ M1−β(t) δβ(t) + O(∆t), 0 ≤ t ≤ Tmax. (6.12)

6.1. FFT Laplacian smoothing in non-rectangular regions. In rectangu-
lar regions Ψ, the Fast Fourier Transform is an efficient tool for synthesizing (−∆)p

for positive non-integer p. This was used to advantage in the computational experi-
ment in Section 5. However, as was shown in [3], and will be shown again in Section
10 below, FFT Laplacian smoothing may be feasible for Eq. (3.2) in non-rectangular
regions Ω, with zero Dirichlet data on an assumed smooth boundary ∂Ω. Enclosing
Ω in a rectangle Ψ, a uniform grid is imposed on Ψ, fine enough to sufficiently well
approximate ∂Ω. The discrete boundary ∂Ωd, consisting of the grid points closest to
∂Ω, is then used in place of ∂Ω . The elliptic operator L is now discretized on Ω using
centered differencing. At each time step m in Eq. (6.4), after applying the operator
I + ∆tG to Um on Ω ⊂ Ψ, the solution is extended to all of Ψ by defining it to be
zero on Ψ−Ω. FFT algorithms are then applied on Ψ to synthesize Q∆ in Eq. (6.1),
and produce Um+1 = S∆(I + ∆tG)Um, while retaining only the values of Um+1 on
Ω. This process is then repeated at the next time step.

However, if ∂Ω needs to be approximated to high accuracy, and/or inhomogeneous
data are given on ∂Ω that cannot be reduced to the homogeneous case, the known or
precomputed Laplacian eigenfunctions on Ω should be used to construct S∆. More
accurate discretizations on non uniform grids can also be considered.

7. Nonlinear computational experiment on backward in time recon-
struction in thermoelastic plate. While the theoretical developments in Sections
3, 4, and 6, are restricted to linear, autonomous, selfadjoint elliptic operators L, the
stabilized scheme in Eq. (6.4) may be applied to more general problems. With Ω the
open unit square 0 < x, y < 1, and Tmax = 1.44 × 10−3, let L be the nonlinear
differential operator defined as follows on functions z(x, y, t) on Ω× (0, Tmax):

Lz = −0.001s(z)∇.{q(x, y, t)∇z}− 0.01(zzx + zzy), (7.1)

where

s(z) = exp{0.005
√
|z]}

q(x, y, t) = exp(10t) {1 + 2 sinπx sin πy} ≥ 1,
(7.2)
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Temperature at time  0 Displacement at tim e 0 Velocity at time 0

 Temperature at tim e T       Displacem ent at time T        Velocity at time T

Recovered at time 0          Recovered at time 0        Re covered at time 0

 Using input data a t positive time T, shown in middle
 row, explicit sche me marching backwar d in time seeks
 to recover true in itial data at time 0, shown in top row .

    NONLINEAR THERMOELASTIC PLATE PROB LEM

Actually recovered data are shown in l ast row.

PARTIALLY SUCCESSFU L BACKWARD RECOVERY

Fig. 7.1. Nonlinear experiment in Section 7 lies outside scope of linear theory developed in
Sections 3, 4, and 6, but FFT Laplacian stabilized explicit scheme in Eq. (6.4) can provide useful
backward reconstruction, as is evident using image magnification. However, insufficiently accurate
input data at Tmax, coupled with the adverse Hölder continuity in nonlinear backward problems
discussed in Section 2, now lead to persistent artifacts in recovered temperature and displacement
at t = 0.
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With α = β = 3, and (x, y, t) ∈ Ω× (0, Tmax), consider the system

ut = −βLu− αLv,

vt = Lw + αLu,

wt = −Lv,

u(x, y, 0) = f(x, y), v(x, y, 0) = g(x, y), w(x, y, 0) = h(x, y),

u(x, y, t) = v(x, y, t) = w(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, Tmax].

(7.3)

This system differs from that considered in Eq. (3.2) in that the operator L is
nonlinear, time-dependent, and non-selfadjoint. Therefore, the theoretical develop-
ments in Sections 3, 4, and 6, do not apply to Eq. (7.3). In particular, the hypothesis
in Eq. (6.2) is not applicable. Nevertheless, backward reconstruction of solutions
to Eq. (7.3) can still be attempted using the Laplacian stabilized explicit scheme in
Eq. (6.4). The above system is primarily of mathematical interest, and may not reflect
any actual physical problem. It is designed to test the robustness of the stabilized
explicit scheme in the presence of nonlinearities.

The images used as initial values in the present experiment, shown in the top row
of Figure 7.1, are the same as those in Figure 5.1. However, the USAF chart image is
now used as the temperature, while the MRI brain image is used as the ‘displacement’.
With ∆x = ∆y = 1/512, a uniform spatial grid was placed on Ω. Using centered
finite differencing for spatial discretization, together with ∆t = 2.4 × 10−7, stable
forward computation up to time Tmax = 6000∆t = 1.44× 10−3, produced the images
in the middle row of Figure 7.1. As in Figure 5.1, only the non-negative values,
u+(x, y, Tmax), v

+(x, y, Tmax), w
+(x, y, Tmax), defined in Eq. (5.2), were used to form

the middle row images.
On-line image magnification in Figure 7.1 reveals the extent of interaction in these

three middle row images. In particular, the MRI brain and satellite images are no-
ticeably affected by the USAF chart image, while the MRI and USAF images appear
only mildly affected by the satellite image. The actual computed data u(x, y, Tmax),
v(x, y, Tmax), w(x, y, Tmax), exhibit substantial negative values as a natural conse-
quence of the evolution in Eq. (7.3). These data may not be as good an approxima-
tion to the true solution, as was the case in Figure 5.1. Only second order accurate
centered differencing was used for spatial discretization in Figure 7.1, as compared to
the significantly more accurate spectral Fourier discretization method used in Figure
5.1.

The Laplacian stabilized explicit scheme in Eq. (6.4) was applied to the above
computed data. Using the previous values of ∆x,∆y, together with a six times
larger value of |∆t|, the scheme was used to march 1000 time steps backward from
t = Tmax. Here, the ability to perform stable explicit computations with a sig-
nificantly larger |∆t|, together with the efficient FFT synthesis of the smoothing
operator Q∆ in Eq. (6.2), provides an important advantage in nonlinear ill-posed
initial value problems, by allowing fast trial reconstructions in an interactive search
for a suitable parameter pair (ǫ, q) in Eq. (6.4). After relatively few trials, the pair
ǫ = 6.0 × 10−12, q = 3.875, was located, and resulted in the images shown in the
bottom row of Figure 7.1.

Image magnification reveals significant backward recovery in all three bottom row
images. In particular, the strong influence of the USAF chart image on the MRI brain



and satellite images, seen in the middle row in Figure 7.1, has now been considerably
reduced, and all three images have been noticeably sharpened.

However, both the USAF chart and MRI brain images in the bottom row of Figure
7.1 are affected by a satellite image artifact at the center of the image. That artifact
could not be removed by using smaller values of |∆t|, nor by locating other parameter
pairs (ǫ, q) that produce similar sharpening. Thus, backward recovery in the nonlinear
system in Eq. (7.3) appears less successful than was the case in the linear system in
Eq. (5.1). That is not unexpected. In the linear autonomous selfadjoint system in
Eq. (5.1), the Hölder exponent µ(t) = t/Tmax as t ↓ 0, as noted in Section 2. Moreover,
in Figure 5.1, the computed input data at t = Tmax more accurately approximates
the true solution than is the case in Figure 7.1. In contrast, as illustrated in the
explicit example in Section 2.1, and explored more extensively in [35], the fundamental
uncertainty in backward reconstruction in the nonlinear system in Eq. (7.3) is likely
to be significantly larger, due to the less accurate input data at t = Tmax in Figure
8.1, coupled with a more rapidly decaying Hölder exponent µ(t) as t ↓ 0, in Eq. (2.3).

Significantly, in the above nonlinear experiment, substantially more accurate
backward recovery can be achieved from computed data at time t = Tmax/2. Evi-
dently, despite the discretization error and the numerical noise, the computed solution
at t = Tmax/2, is still a sufficiently good approximation to the exact solution at that
smaller value of t, while becoming progressively less accurate as t increases.

In summary, the computational experiment in Section 7 makes two important
points. The Laplacian stabilized explicit scheme in Eq. (6.4) can be successfully ap-
plied to a limited class of nonlinear problems, for which the ability to choose a larger
value of |∆t|, along with FFT synthesis of Q∆, provide a significant advantage. How-
ever, regardless of the computational method used, quality backward reconstruction
in nonlinear problems generally requires highly accurate input data at the positive
time t = Tmax.

8. A stabilized explicit scheme for linear selfadjoint coupled wave and
diffusion equations. Much of the preceding theory in Sections 3, 4, and 6, developed
for the thermoelastic system in Eq. (3.2), can also be applied to coupled sound and
heat flow.

Let Ω be a bounded domain in Rn with a smooth boundary ∂Ω. Let < , > and
‖ ‖2, respectively denote the scalar product and norm on L2(Ω). Let L denote a
linear, second order, positive definite selfadjoint variable coefficient elliptic differential
operator in Ω, with homogeneous Dirichlet boundary conditions on ∂Ω. Let {φm}∞m=1

be the complete set of orthonormal eigenfunctions for L on Ω, and let {λm}∞m=1,
satisfying

0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · ↑ ∞, (8.1)

be the corresponding eigenvalues.
With positive constants a, b, d, consider the linear initial value problem on

Ω× (0, T ],

ut = −bLu− dv,

vt = aLu− aLw,

wt = v,

u(x, 0) = f(x), v(x, 0) = g(x), w(x, 0) = h(x).

(8.2)
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When L = −∆, a = c2, b = σ, d = (γ − 1), the above system reduces to the
linearized equations of coupled sound and heat flow discussed in [4], [7], namely,
wtt = c2∆w − c2∆u, ut = σ∆u − (γ − 1)wt , with w = u = 0 on ∂Ω, where c is the
isothermal sound speed, σ is the thermal conductivity, and 1 < γ < 2, is the ratio
of specific heats.

The initial value problem Eq. (8.2) becomes ill-posed when the time direction is
reversed. We contemplate such time-reversed computations by allowing for possible
negative time steps ∆t in the explicit difference scheme Eq.(8.7) below. With λm as
in Eq. (8.1), the positive constants a, b, d, and the operator L as in Eq. (8.2), fix
ω > 0 and p > 1. Given ∆t, define ρ, Λ, Q, ζm, qm, as follows:

ρ = {1 + d+ d2 + 2a2 + 2b+
√
2a2 + 2b2}, Λ = ρ(I + L), Q = exp(−ω|∆t|Λp),

ζm = ρ(1 + λm) > 1, qm = exp (−ω|∆t|(ζm)p) , m ≥ 1.
(8.3)

Let G, S, and P , be the following 3× 3 matrices

G =




−bL −dI 0
aL 0 −aL
0 I 0



 , S =




Q 0 0
0 Q 0
0 0 Q



 , P =




Λp 0 0
0 Λp 0
0 0 Λp



 . (8.4)

Let W be the three component vector [u, v, w]T . We may rewrite Eq. (8.2) as the
equivalent first order system,

Wt = GW, 0 < t ≤ Tmax, W (·, 0) = [f, g, h]T . (8.5)

As in Section 3, it is instructive to study the following explicit time-marching
finite difference scheme for Eq.(8.5), in which only the time variable is discretized,
while the space variables remain continuous. With a given positive integer N , let
|∆t| = Tmax/N be the time step magnitude, and let Wn denote W (·, n∆t), n =
0, 1, · · ·N . If W (·, t) is the unique solution of Eq.(8.5), then

Wn+1 = Wn +∆tGWn + τn, (8.6)

where the ‘truncation error’ τn = 1
2 (∆t)2G2W (t̃), with n|∆t| < t̃ < (n+1)|∆t|. With

G and S as in Eq.(8.4), let R be the linear operator R = S + ∆tSG. We consider
approximating Wn with Un ≡ [un, vn]T , where

Un+1 = SUn +∆tSGUn ≡ RUn, n = 0, 1, · · · (N − 1), U0 = [f, g, h]T . (8.7)

With ∆t > 0 and the data U0 at time t = 0, the forward marching scheme in Eq.(8.7)
aims to solve a well-posed problem. However, with ∆t < 0, together with appropriate
data U0 at time Tmax, marching backward from Tmax in Eq.(8.7) attempts to solve
an ill-posed problem. Define the following norms for three component vectors such as
W (., t) and Un,

‖ W (·, t) ‖2=
{
‖ u(·, t) ‖22 + ‖ v(·, t) ‖22 + ‖ w(·, t) ‖22

}1/2
,

‖ Un ‖2=
{
‖ un ‖22 + ‖ vn ‖22 + ‖ wn ‖22

}1/2
,

|||W |||2,∞ = sup 0≤t≤Tmax
{‖ W (·, t) ‖2} .

(8.8)
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Lemma 6. With p > 1, and ζm, qm, as in Eq. (8.3), fix a positive integer J, and
choose ω ≥ (ζJ )

1−p. Then,

qm (1 + |∆t|ζm) ≤ 1 + |∆t|ζJ , m ≥ 1. (8.9)

Proof : This is Lemma 1 in Section 3, with ρ in Eq. (8.3) replacing ν in Eq. (3.3),
and hence, a new definition of ζm, qm.

Lemma 7. With ω, p, ζJ , as in Lemma 6, and R as in Eq.(8.7), we have
‖ R ‖2≤ 1 + |∆t|ζJ . The explicit scheme in Eq.(8.7) is unconditionally stable, and

‖ Un ‖2=‖ RnU0 ‖2≤ exp{n|∆t|ζJ} ‖ U0 ‖2, n = 1, 2, · · · , N. (8.10)

Proof : In the system Un+1 = SUn+∆tSGUn, expand in the orthonormal eigenfunc-
tions φm, using Lφm = λmφm. Let un =

∑∞
m=1 u

n
mφm, vn =

∑∞
m=1 v

n
mφm, wn =∑∞

m=1 w
n
mφm, where znm =< zn, φm >. Then, with qm as in Eq. (8.3),

un+1
m = qmun

m − qm∆t(bλmun
m + dvnm),

vn+1
m = qmvnm + qmλm∆t(aun

m − awn
m),

wn+1
m = qmwn

m + qm∆tvnm.

(8.11)

Hence,

|un+1
m |2 ≤ q2m|un

m|2 + q2m∆t2|bλmun
m + dvnm|2 + 2q2m|∆t||un

m||bλmun
m + dvnm|,

|vn+1
m |2 ≤ q2m|vnm|2 + q2m∆t2λ2

m|aun
m − awn

m|2 + 2q2m|∆t|λm|vnm||aun
m − awn

m|,

|wn+1
m |2 ≤ q2m|wn

m|2 + q2m∆t2|vnm|2 + 2q2m|∆t||wn
mvnm|.

(8.12)
Next, using 2xy ≤ x2 + y2,

2q2m|∆t| |un
m| |bλmun

m + dvnm| ≤ 2q2m|∆t|bλm|un
m|2 + 2q2m|∆t|d|un

mvnm|,
≤ 2q2m|∆t|bλm|un

m|2 + q2m|∆t|d|un
m|2 + q2m|∆t|d|vnm|2, (8.13)

and

q2m∆t2|bλmun
m + dvnm|2 ≤ 2q2m∆t2b2λ2

m|un
m|2 + 2q2m∆t2d2|vnm|2. (8.14)

Likewise,

2q2m|∆t|λm|vnm||aun
m − awn

m| ≤ q2m|∆t|λm|vnm|2 + q2m|∆t|λm|aun
m − awn

m|2,
≤ q2m|∆t|λm|vnm|2 + 2q2m|∆t|λma2|un

m|2 + 2q2m|∆t|λma2|wn
m|2, (8.15)

and

q2m∆t2λ2
m|aun

m − awn
m|2 ≤ 2q2m∆t2λ2

ma2|un
m|2 + 2q2m∆t2λ2

ma2|wn
m|2. (8.16)

Therefore,

|un+1
m |2 ≤ q2m

{
1 + (d+ 2bλm)|∆t|+ 2b2λ2

m∆t2
}
|un

m|2
+ q2m

{
d|∆t|+ 2d2∆t2

}
|vnm|2. (8.17)
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|vn+1
m |2 ≤ q2m

{
2a2λm|∆t|+ 2a2λ2

m∆t2
}
|un

m|2
+ q2m {1 + λm|∆t|} |vnm|2 + q2m

{
2a2λm|∆t|+ 2a2λ2

m∆t2
}
|wn

m|2. (8.18)

|wn+1
m |2 ≤ q2m {1 + |∆t|} |wn

m|2 + q2m
{
|∆t|+∆t2

}
|vnm|2. (8.19)

Let ξkm = |uk
m|2 + |vkm|2 + |wk

m|2. Combining Eqs. (8.17), (8.18) and (8.19), we find

ξn+1
m ≤ |un

m|2q2m
[
1 + {d+ (2a2 + 2b)λm}|∆t|+ (2a2 + 2b2)λ2

m∆t2
]

+ |vnm|2q2m
[
1 + {1 + d+ (1 + 2d2)|∆t|+ λm}|∆t|

]

+ |wn
m|2q2m

[
1 + (1 + 2a2)λm|∆t|+ 2a2λ2

m∆t2
]

(8.20)

With ρ = {1+ d+2d2 + 2a2 + 2b+
√
2a2 + 2b2}, and ζm = ρ(1 + λm) > 1, we then

have ξn+1
m < q2m {1 + ζm|∆t|}2 ξnm. Hence,

(

∞∑

m=1

ξn+1
m )1/2 < supm≥1{qm(1 + ζm|∆t|)}(

∞∑

m=1

ξnm)1/2, (8.21)

which implies Eq. (8.10) on using Lemma 6. QED

Lemma 8. Let W (t) be the unique solution of Eq.(8.5). Then, with G, S and P
as in Eq.(8.4), the definitions of the norms in Eq.(8.8), and 0 ≤ n ≤ N ,

‖ τn ‖2 ≤ 1/2(∆t)2 |||G2W |||2,∞,

‖ Wn − SWn ‖2 ≤ ω|∆t| |||PW |||2,∞,

|∆t| ‖ GWn − SGWn ‖2 ≤ ω(∆t)2 |||PGW |||2,∞. (8.22)

Proof : The proof is the same as that in Lemma 3 in Section 3.

Theorem 5. With ∆t > 0, let Wn be the unique solution of Eq. (8.5) at t = n∆t.
Let Un be the corresponding solution of the forward explicit scheme in Eq. (8.7),
and let p, ζJ , ω, be as in Lemma 6. If ER(t) ≡ Un − Wn, denotes the error at
t = n∆t, n = 0, 1, 2, · · · , N, we have

‖ ER(t) ‖2≤ etζJ ‖ ER(0) ‖2 +
{
ω(etζJ − 1)/ζJ

}
|||PW |||2,∞

+
{
(etζJ − 1)/ζJ

}{
ω∆t |||PGW |||2,∞ + (∆t/2) |||G2W |||2,∞

}
. (8.23)

Proof : The proof is the same as that in Theorem 1 in Section 4.

As in Theorem 1, we may set ER(0) = 0 in Eq. (8.23), and choose ω = (ζJ )
1−p

in Lemma 6. Eq. (8.23) then reduces to

‖ ER(t) ‖2≤ (ζJ )
−p(etζJ − 1) |||PW |||2,∞ + O(∆t), 0 ≤ t ≤ Tmax, (8.24)

as was the case for the forward problem error in Eq. (4.4).

In the ill-posed problem of marching backward from given data Ub = [fb, gb, hb]
T

at t = Tmax, where

‖ Ub −W (·, Tmax) ‖2≤ δ, ‖ W (·, 0) ‖2≤ M, (8.25)
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we have, using the same proof as in Theorem 2 in Section 4,

Theorem 6. With ∆t < 0, let Wn be the unique solution of the forward well-
posed problem in Eq. (8.5) at s = Tmax − n|∆t|. Let Un be the solution of the
backward explicit scheme in Eq. (8.7), with initial data U(0) = Ub = [fb, gb, hb] as in
Eq.(8.25). Let p, ζJ , ω, be as in Lemma 6. If ER(s) ≡ Un −Wn, denotes the error
at s = Tmax − n|∆t|, n = 0, 1, 2, · · · , N, then

‖ ER(s) ‖2≤ δen|∆t|ζJ +
{
ω(en|∆t|ζJ − 1)/ζJ

}
|||PW |||2,∞

+
{
(en|∆t|ζJ − 1)/ζJ

}{
ω|∆t| |||PGW |||2,∞ + (|∆t|/2) |||G2W |||2,∞

}
.(8.26)

As was the case in Eq. (4.12) in Section 4, given M and δ as in Eq. (8.25), we choose
ζJ = (1/Tmax) log(M/δ), ω = (ζJ )

1−p, and define β(t) = t/Tmax. Eq. (8.26) then
reduces to

‖ ER(t) ‖2 ≤ (ζJ )
−p {exp[ζJ(Tmax − t)]− 1} |||PW |||2,∞

+ M1−β(t) δβ(t) + O(|∆t|), 0 ≤ t ≤ Tmax. (8.27)

Therefore, in the coupled sound and heat flow system with autonomous selfadjoint
spatial operator L, the stabilized explicit scheme in Eq. (8.7) produces almost best-
possible results, differing from the fundamental uncertainty M1−β(t) δβ(t), only by the
stabilization penalty + O(|∆t|) truncation error.

8.1. Using the Laplacian for smoothing when L has variable coeffi-
cients. All of the results in Section 6 can be applied to the linear system in Eq. (8.5).
With ρ, Λ, Q as in Eq. (8.3), let Γ = ρ(I −∆). For any real q > 1 and ǫ > 0, define
Q∆ = exp{−ǫ|∆t|Γq}. In domains where closed form expressions for the eigenfunc-
tions of the Laplacian are known, it may be advantageous to use the smoothing
operator Q∆ in lieu of Q in the stabilized explicit scheme in Eq. (8.7). This is feasible
for those differential operators L for which the hypothesis in Eq. (6.2) is valid, so
that, with appropriately chosen (ǫ, q), ‖ Q∆g ‖2≤‖ Qg ‖2, for all g ∈ L2(Ω) and
sufficiently small |∆t|. When this is the case, Lemmas 4 and 5 in Section 6, together
with Theorems 3 and 4, and Corollaries 1 and 2, can be restated so as to apply to the
Laplace stabilized explicit scheme in Eq. (8.7). Moreover, as discussed in Section 6.1,
and demonstrated in the computational experiment in Section 10 below, it may be
possible to use efficient FFT algorithms to synthesize Q∆ even in problems defined
on non-rectangular domains Ω.

9. Computational experiment on backward recovery in linear coupled
sound and heat flow. Let Ω be the open unit square 0 < x, y < 2π. With 0 ≤
t ≤ Tmax = 0.002, a = 6, b = 1, d = 0.4, consider the following linear autonomous
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Temperature at time  0 Displacement at tim e 0 Velocity at time 0

 Temperature at tim e T       Displacem ent at time T        Velocity at time T

Recovered at time 0          Recovered at time 0        Re covered at time 0

 Using input data a t positive time T, shown in middle
 row, explicit sche me marching backwar d in time seeks
 to recover true in itial data at time 0, shown in top row .

BACKWARD RECOVERY I N LINEAR COUPLED SO UND 
  AND HEAT FLOW WIT H CONSTANT COEFFICIENTS.
 

Actually recovered data are shown in l ast row.

Fig. 9.1. Linear coupled sound and heat flow experiment in Section 9 shows severe distortion
and blurring of initial data in forward evolution up to time Tmax, followed by successful backward
in time reconstruction using stabilized explicit scheme in Eq. (8.7).
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selfadjoint coupled sound and heat flow system Ω× (0, Tmax)

ut = b∆u+ dv,

vt = −a∆w − a∆u,

wt = v,

u(x, y, 0) = f(x, y), v(x, y, 0) = g(x, y), w(x, y, 0) = h(x, y),

u(x, y, t) = v(x, y, t) = w(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, Tmax].

(9.1)

Here, u(x, y, t) denotes the temperature, w(x, y, t) the displacement, and v =
wt(x, y, t) is the velocity. The initial values f(x, y), h(x, y), g(x, y), are the three
512× 512 pixel images shown in the top row of Figure 9.1. The system in Eq. (9.1)
differs from that considered in Eq. (5.1) in Section 6. The Laplacian operator is applied
to each variable occurring on the right hand side, in each of the three equations in
Eq. (5.1), whereas in Eq. (9.1), only the second equation has that property. This leads
to a significantly different forward evolution. From the last equation in Eq. (9.1), it
is clear that one can expect very little change in the USAF resolution chart image,
representing the displacement w(x, y, t), in the forward evolution from t = 0 to t =
Tmax = 0.002. Likewise, with d = 0.4 in the first equation in Eq. (9.1), the forcing
term dv can exert almost no influence on the forward evolution of the Elizabeth Taylor
temperature image u(x, y, t) up to Tmax = 0.002.

With ∆x = ∆y = (2π)/512, a uniform spatial grid was placed on Ω. Taking
advantage of the constant coefficient differential operators in Eq. (9.1), highly accu-
rate spectral Fourier methods for spatial discretization can be used, based on FFT
algorithms. With ∆t = 1 × 10−7, stable forward numerical computation was carried
out in Eq.(8.7) up to Tmax = 20000∆t. While the initial values f, h, g are non
negative functions, the corresponding solution at positive times can develop negative
values, as was the case in Figure 5.1. As in that Figure, only the non negative parts
u+(x, y, Tmax), w+(x, y, Tmax), v+(x, y, Tmax), as defined in Eq. (5.2), are again dis-
played as the three images in the middle row of Figure 9.1.

Online image magnification in the middle row in Figure 9.1, indicates that the
blurred Elizabeth Taylor image is not visibly affected by the other two images, while
the USAF chart image is almost identical to the original in the first row. However, the
Mr Spock velocity image has become an unrecognizable mixture of the three images in
the first row. In Figure 5.1, each of the three images in the middle row were mixtures
of the images in the first row.

Using the computed data u(x, y, Tmax), w(x, y, Tmax), v(x, y, Tmax), and the
previous values of ∆x, ∆y, and ∆t, the stabilized explicit scheme in Eq. (8.7) was
run backward 20000 time steps from Tmax. Here, the fact that Ω is a rectangular
region with L = (−∆), naturally leads to Q∆ in Section 8.1 as the smoothing operator
in Eq.(8.7). This is easily synthesized using FFT algorithms. After very few trials,
a pair ǫ = 3.0× 10−10, q = 3.75, was located, which produced the recovery at t = 0
shown in the last row in Figure 9.1.

Evidently, this is a successful reconstruction, owing to highly accurate computed
data at t = Tmax, together with a favorable Hölder exponent µ(t) = t/Tmax, in
Eq. (2.3). Note that the recovered USAF chart displacement image is not as sharp as
the corresponding image at t = Tmax, due to the blurring caused by Q∆.

26



Temperature at time  0 Displacement at tim e 0 Velocity at time 0

 Temperature at tim e T       Displacem ent at time T        Velocity at time T

Recovered at time 0          Recovered at time 0        Re covered at time 0

 Using input data a t positive time T, shown in middle
 row, explicit sche me marching backwar d in time seeks
 to recover true in itial data at time 0, shown in top row .

  BACKWARD RECOVERY  IN NONLINEAR COUPL ED 
    SOUND AND HEAT FLOW IN QUARTER CIRCLE.
 

Actually recovered data are shown in l ast row.

Fig. 10.1. Nonlinear coupled sound and heat flow experiment in Section 10 lies outside scope
of linear theory developed in Sections 9 and 10. As discussed in Section 6.1, enclosing quarter
circle region Ω in unit square Ψ, allows use of FFT Laplacian smoothing operator Q∆ in backward
reconstruction with scheme in Eq. (8.7). Useful backward recovery obtained despite insufficiently
accurate input data at time Tmax.
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10. Backward recovery in nonlinear coupled sound and heat flow in
non-rectangular region, using FFT Laplacian smoothing. We now highlight
the versatility of the stabilized scheme in Eq. (8.7) by considering a nonlinear example
in a non-rectangular region. Let Ω be the open quarter circle region in the (x, y) plane,

0.05 < x, y < 0.95, (x− 0.05)2 + (y − 0.05)2 < (0.9)2, (10.1)

let Tmax = 0.002, and let L be the nonlinear differential operator defined as follows
on functions z(x, y, t) on Ω× (0, Tmax):

Lz = −0.001s(z)∇.{q(x, y)∇z}− 0.01(zzx + zzy), (10.2)

where

s(z) = exp{0.005|z|0.55}, 1 < q(x, y) = {1 + 2 sinπx sinπy} ≤ 3, (10.3)

With a = 6, b = 5, d = 0.95, and (x, y, t) ∈ Ω× (0, Tmax), consider the system

ut = −bLu− dv,

vt = aLu− aLw,

wt = v,

u(x, y, 0) = f(x, y), v(x, y, 0) = g(x, y), w(x, y, 0) = h(x, y),

u(x, y, t) = v(x, y, t) = w(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, Tmax].

(10.4)

As in Section 9, u(x, y, t) denotes the temperature, w(x, y, t) the displacement,
and v = wt(x, y, t) is the velocity. The initial values f(x, y), h(x, y), g(x, y), are the
three images shown in the top row of Figure 10.1. Here, the quarter circle region Ω was
enclosed in the unit square Ψ = {0 < x, y < 1}. A 512×512 uniform grid was imposed
on Ψ, leading to a discrete boundary ∂Ωd consisting of the grid points closest to ∂Ω.
This was assumed to sufficiently well-approximate ∂Ω. With ∆x = ∆y = 1/512,
|∆t| = 2.0 × 10−6, and homogeneous boundary conditions applied on ∂Ωd, explicit
time differencing, together with centered finite differencing in the space variables,
were used in a stable forward computation for 1000∆t. This produced the images
at Tmax = 0.002, shown in the middle row in Figure 10.1. Here, the Sydney Opera
House velocity image has now become an unrecognizable mixture of the three images
in the first row. As in previous experiments, the actual data at Tmax involve negative
values which were not used in forming the middle row images.

While highly accurate spectral Fourier methods were used in Figure 9.1, lower
accuracy finite differences were used in Figure 10.1, together with a twenty times
larger value of |∆t|. Consequently, the computed input data at time Tmax in the
middle row of Figure 10.1, are substantially less accurate than was the case in Figure
9.1. Moreover, the linear autonomous selfadjoint theory developed in Section 8, along
with the hypothesis in Eq. (6.2), are inapplicable to the nonlinear system in Eq. (10.4).
Nevertheless, as discussed in Section 6.1, it is possible to apply FFT-synthesized
smoothing operators to stabilize explicit backward in time marching in the present
situation.

At each time step m in Eq. (8.7), after applying the operator (I +∆tG) to Um

on Ω ⊂ Ψ, the solution is extended to all of Ψ by defining it to be zero on Ψ − Ω.
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FFT algorithms are then applied on Ψ to synthesize Q∆ in Section 8.1, and produce
Um+1 = S∆(I+∆tG)Um, while retaining only the values of Um+1 on Ω. This process
is then repeated at the next time step.

With the previous values of ∆x,∆y, |∆t|, the scheme in Eq. (8.7) with Q∆ in lieu
of Q, was used to march 1000 time steps backward using the computed input data at
Tmax. After very few trials, a parameter pair ǫ = 8.0× 10−11, p = 3.35, was located,
which produced the results in the last row of Figure 10.1. Image magnification reveals
useful reconstruction, despite the limited accuracy in the input data at time Tmax.
While faint artifacts remain visible in the recovered Sydney Opera House image,
reconstruction of that image from the unrecognizable corresponding image in the
middle row, seems remarkable. We have aTmax = 0.012 in the present experiment, and
the nonlinear operator L in Eq. (10.4) differs slightly from that used in the nonlinear
experiment in Eq. (7.3), where αTmax = 0.00432. Thus, forward nonlinear evolution
in the middle row of Figure 10.1 has progressed further than was the case in the middle
row in Figure 7.1. Nevertheless, higher quality reconstructions were obtained in the
present case. As already noted, in contrast to the system in Eq. (10.4), the operator L
in Eq. (7.3) acts on every variable on the right hand side of each of the three equations
in that system, thereby producing more image mixing and scrambling of data at Tmax

in Figure 7.1, than occurs in Figure 10.1. Hence, coupled sound and heat flow may
be more easily run backward in time than thermoelastic wave propagation.

11. Concluding Remarks. The primary aim in this paper was to open doors,
and demonstrate the possibility of successful backward reconstruction in a class of
problems generally considered intractable. The fact that this was done using explicit
marching schemes is especially noteworthy, as such schemes allow the computation of
multidimensional nonlinear problems on fine meshes by simply lagging the nonlinearity
at the previous time step. Implicit time differencing would necessitate the iterative
solution of large nonlinear algebraic systems of difference equations at every time step,
a formidable and time-consuming task. Such implicit schemes would be impractical
in ill-posed reconstruction, where several trial solutions are usually needed prior to
locating optimal regularization parameters.

Although the hypothesis in Eq. (6.2) plays an inportant role, and numerous
successful computational experiments appear to validate it, that inequality has not
yet been established. The use of Q∆ in nonlinear problems is not contemplated in
Eq. (6.2). However, useful results obtained in Figures 7.1 and 10.1, as well as in other
nonlinear examples in [1–3], raise interesting research questions.

The use of 512 × 512 pixel gray scale images as initial data provide challenging
test problems, and lead to instructive experiments. Such experiments drew attention
to the necessity for sufficient accuracy in the input data at time Tmax, owing to the
fragile Hölder continuity in backward in time continuation with non selfadjoint, or
nonlinear, spatial operators.
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[15] Dell’Oro F, Muñoz Rivera JE, Pata V. Stability properties of an abstract system with appli-
cations to linear thermoelastic plates. Journal of Evolution Equations. 2013;13: 777–794.

[16] Tebou L. Stabilization of some coupled hyperbolic/parabolic equations. Discrete and Continu-
ous Dynamical Systems Series B. 2010;14:1601–1620.

[17] Hao J, Liu Z. Stability of an abstract system of coupled hyperbolic and parabolic equations. Z.
Angew. Math. Phys. 2013;64:1145–1159.

[18] Benabdallah A, Naso MG. Null controllability of a thermoelastic plate. Abstract and Applied
Analysis. 2001;7:585–599.

[19] Avalos G, Lasiecka I. Mechanical and thermal null controllability of thermoelastic plates and
singularity of the associated energy function. Control and Cybernetics. 2003;32:473–490.

[20] Miller L. On the cost of fast controls for thermoelastic plates. Asymptotic Analysis. 2007;51:93–
100.

[21] Eller M, Lasiecka I, Triggiani R. Exact/approximate controllability of thermoelastic plates with
varaiable thermal coefficients. Discrete and Continuous Dynamical Systems. 2001:7:283–
302.

[22] Ames KA, Payne LE. Stabilizing solutions of the equations of dynamical linear thermoelasticity
backward in time. Stability and Applied Analysis of Continuous Media. 1991;1:243–260.

[23] Lasiecka I, Renardy M, Triggiani R. Backward uniqueness for thermoelastic plates with rota-
tional forces. Semigroup Forum. 2001;62:217–242.

[24] Koch H, Lasiecka I. Backward uniqueness in linear thermoelasticity with time and space variable
coefficients. In Functional Analysis and Evolution Equations, the Gunter Lumer Volume,
Birkhauser Verlag 2007:389-403. Edited by H. Amann, W. Arendt, M. Hieber, F. Neubran-
der, S. Nicaise, and J. von Below.

[25] Ciarletta M. On the uniqueness and continuous dependence of solutions in dynamical thermoe-
lasticity backward in time. J. Therm. Stress. 2002;25:969–984.

[26] Chirita S. On the final boundary value problems in linear thermoelasticity. Meccanica.
2012;47:2005–2011.

[27] Passarella F, Tibullo V, Zampoli V. On the uniqueness in dynamical thermoelasticity backward
in time for porous media. J. Therm. Stress. 2013;36:501–515.

[28] Lavrentiev MM. Some improperly posed problems of mathematical physics. New York (NY):
Springer-Verlag; 1967.

[29] Ames KA, Straughan B. Non-standard and improperly posed problems. New York (NY): Aca-
demic Press; 1997.

[30] Agmon S, Nirenberg L. Properties of solutions of ordinary differential equations in Banach
space. Comm. Pure Appl. Math. 1963;16:121–239.

[31] Knops RJ. Logarithmic convexity and other techniques applied to problems in continuum me-
chanics. In: Knops RJ, editor. Symposium on non-well-posed problems and logarithmic
convexity. Vol. 316, Lecture notes in mathematics. New York (NY): Springer-Verlag; 1973.

[32] Miller K. Least squares methods for ill-posed problems with a prescribed bound. SIAM J. Math.
Anal. 1970;1:52-74.

30



[33] Miller K. Logarithmic convexity results for holomorphic semigroups. Pacific J. Math.
1975;58:549–551.

[34] Knops RJ, Payne LE. On the stability of solutions of the Navier-Stokes equations backward in
time. Arch. Rat. Mech. Anal. 1968;29:331–335.

[35] Carasso AS. Reconstructing the past from imprecise knowledge of the present: Effective non-
uniqueness in solving parabolic equations backward in time. Math. Methods Appl. Sci.
2012;36:249-261.

[36] Babuska I, Osborn JE. Finite element-Galerkin approximation of the eigenvalues and eigenvec-
tors of selfadjoint problems. Math. Comp. 1989;52:275-297.

[37] Heuveline V. On the computation of a very large number of eigenvalues for selfadjoint elliptic
operators by means of multigrid methods. J. Comput. Phys. 2003;184:321-337

[38] Platte RB, Driscoll TA. Computing eigenmodes of elliptic operators using radial basis functions.
Comput. Math. Appl. 2004;48:561-576.

[39] Morse PM, Feshbach H. Methods of theoretical physics. New York (NY): McGraw-Hill; 1953.
[40] Arendt W, Ter Elst AFM. Gaussian estimates for second order elliptic operators with boundary

conditions. J. Oper. Theory. 1997;38:87-130.
[41] Aronson DG. Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math.

Soc. 1967;73:890-896.
[42] Ouhabaz EM. Gaussian estimates and holomorphy of semigroups. Proc. Am. Math. Soc.

1995;123:1465-1474.
[43] Ouhabaz EM. Gaussian upper bounds for heat kernels of second order elliptic operators with

complex coefficients on arbitrary domains. J. Oper. Theory. 2004;51:335-360.

31

View publication statsView publication stats

https://www.researchgate.net/publication/323625674

